Algorithms for NLP

Language Modeling |

Taylor Berg-Kirkpatrick — CMU
Slides: Dan Klein — UC Berkeley

g The Noisy-Channel Model

= We want to predict a sentence given acoustics:
w* = arg max P(w|a)
w
*= The noisy-channel approach:

w* = arg max P(wla)
= arg max P(a|lw)P(w)/P(a)

o« arg max P(a|w)P(w)
w

— \

Acoustic model: HMMs over Language model: Distributions
word positions with mixtures over sequences of words
of Gaussians as emissions (sentences)

p 3 ASR Components

Language Model Acoustic Model
source channel
> W >
P(w) P(a|w)
N =
best observed
< decoder |
W d

argmax P(w|a) = argmax P(a|w)P(w)
W W

¥

Acoustic Confusions

the station signs are in deep in english
the stations signs are in deep in english
the station signs are in deep into english
the station 's signs are in deep in english
the station signs are in deep in the english
the station signs are indeed in english
the station 's signs are indeed in english
the station signs are indians in english
the station signs are indian in english
the stations signs are indians in english
the stations signs are indians and english

-14732
-14735
-14739
-14740
-14741
-14757
-14760
-14790
-14799
-14807
-14815

Eﬁ Translation: Codebreaking?

“Also knowing nothing official about, but having guessed
and inferred considerable about, the powerful new
mechanized methods in cryptography—methods which |
believe succeed even when one does not know what
language has been coded—one naturally wonders if the
problem of translation could conceivably be treated as a
problem in cryptography. When | look at an article in
Russian, | say: ‘This is really written in English, but it has
been coded in some strange symbols. | will now proceed to
decode.” ”

Warren Weaver (1947)

W& MT System Components

Language Model Translation Model
source channel
P(e) - € 1 P(f|e)
L/\ ;o -
best observed
e decoder [:

argmax P(e|f) = argmax P(f|e)P(e)
o e

% Other Noisy Channel Models?

= We’re not doing this only for ASR (and MT)

= Grammar / spelling correction
= Handwriting recognition, OCR
= Document summarization

" Dialog generation

" Linguistic decipherment

p 3 Language Models

= Alanguage model is a distribution over sequences of words
(sentences)

P(w)=P(wy..w,)

= What’s w? (closed vs open vocabulary)
= What's n? (must sum to one over all lengths)
= Can have rich structure or be linguistically naive

= Why language models?

= Usually the point is to assign high weights to plausible sentences (cf
acoustic confusions)

= This is not the same as modeling grammaticality

N-Gram Models

p 3 N-Gram Models

= Use chain rule to generate words left-to-right
P(w1 o wn) — HP(w@|w1 . .wi_l)
= Can’t condition on the entire left context

P(??? | Turn to page 134 and look at the picture of the)

= N-gram models make a Markov assumption

P(w1 . wn) — HP(wi|wi_k...w7;_1)

P(please close the door) =

P(please|START) P(close|please) ... P(STOP|door)

p 3 Empirical N-Grams

= How do we know P(w | history)?

= Use statistics from data (examples using Google N-Grams)
= E.g. whatis P(door | the)?

198015222 the first
g 194623024 the same
3 | 168504105 the following ﬁ(door\the) = 14112454
O | 158562063 the world 23135851162
(@)
< | 14112454 the door = 0.0006
e —

23135851162 the *

= This is the maximum likelihood estimate

% Increasing N-Gram Order

" Higher orders capture more dependencies

Bigram Model

Trigram Model

198015222 the first
194623024 the same
168504105 the following
158562063 the world

14112454 the door

23135851162 the *

197302 close the window
191125 close the door
152500 close the gap
116451 close the thread
87298 close the deal

3785230 close the *

P(door | the) = 0.0006

P(door | close the) = 0.05

Increasing N-Gram Order

Unigram

e 1o him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

e Every enter now severally so, let

e Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have nise excellency took of.. Sleep knave we. near; vile
like

}f@ Sparsity

Please close the first door on the left.

3380 please close the door
1601 please close the window
1164 please close the new
1159 please close the gate

0 please close the first

13951 please close the *

}f@ Sparsity

= Problems with n-gram models:

1 -

= New words (open vocabulary) Y

= Synaptitute 806 - -

= 132,701.03 _5 0.4 O Unigrams |

= multidisciplinarization [OBigams -

. w
= Old words in new contexts 0 B , ,
0 500000 1000000
Number of Words

" Aside: Zipf's Law
= Types (words) vs. tokens (word occurences)

Broadly: most word types are rare ones
Specifically:

= Rank word types by token frequency

= Frequency inversely proportional to rank
Not special to language: randomly generated character strings have
this property (try it!)
This law qualitatively (but rarely quantitatively) informs NLP

N-Gram Estimation

p 3 Smoothing

= We often want to make estimates from sparse statistics:

P(w | denied the)
3 allegations "
2 reports I5
1 claims | L 8 < £
1 request 20 81l el| & © O o
© o ||l E o © 5 <
7 total Si1|8] 6 € 8

= Smoothing flattens spiky distributions so they generalize better:

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

allegations
reports
charges
motion
benefits

claims
request

= Very important all over NLP, but easy to do badly

Eﬁ Likelihood and Perplexity

= How do we measure LM “goodness”?

= Shannon’s game: predict the next word

When | eat pizza, | wipe off the

= Formally: define test set (log) likelihood

log P(X|0) = Z log P(w|0)

weX

= Perplexity: “average per word branching

factor”

perp(X,0) = exp (—

log P(X0)

X

)

grease 0.5
sauce 0.4
dust 0.05

mice 0.0001

the 1e-100

3516 wipe off the excess
1034 wipe off the dust

547 wipe off the sweat

518 wipe off the mouthpiece

120 wipe off the grease
0 wipe off the sauce
0 wipe off the mice

28048 wipe off the *

E& Measuring Model Quality (Speech)

= We really want better ASR (or whatever), not better perplexities
= For speech, we care about word error rate (WER)

Correct answer: Andy saw a part of the movie

[+ 4

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions

WER: , = 4/7 = 57%
true sentence size

= Common issue: intrinsic measures like perplexity are easier to
use, but extrinsic ones are more credible

Key Ideas for N-Gram LMs

p 3 Idea 1: Interpolation

Please close the first door on the left.

4-Gram 3-Gram 2-Gram
3380 please close the door 197302 close the window 198015222 the first
1601 please close the window 191125 close the door 194623024 the same
1164 please close the new 152500 close the gap 168504105 the following
1159 please close the gate 116451 close the thread 158562063 the world
0 please close the first 8662 close the first
13951 please close the * 3785230 close the * 23135851162 the *

0.0 0.002 0.009

Specific but Sparse ¢

> Dense but General

E& (Linear) Interpolation

= Simplest way to mix different orders: linear interpolation

AP(wlw_1,w_3) + N P(w|lw_1) + X" P(w)

= How to choose lambdas?
= Should lambda depend on the counts of the histories?

= Choosing weights: either grid search or EM using held-out
data

= Better methods have interpolation weights connected to
context counts, so you smooth more when you know less

p 3 Train, Held-Out, Test

= Want to maximize likelihood on test, not training data
= Empirical n-grams won’t generalize well

= Models derived from counts / sufficient statistics require
generalization parameters to be tuned on held-out data to simulate
test generalization

Training Data nELE-OIL Lt
J Data Data
Counts / parameters from Hyperparameters Evaluate here
here from here

= Set hyperparameters to maximize the likelihood of the held-out data
(usually with grid search or EM)

}& ldea 2: Discounting

= (QObservation: N-grams occur more in training data than they
will later

Empirical Bigram Counts (Church and Gale, 91)

Count in 22M Words | Future c* (Next 22M)
1

2
3
4
5

£ Absolute Discounting

= Absolute discounting
= Reduce numerator counts by a constant d (e.g. 0.75)
= Maybe have a special discount for small counts
= Redistribute the “shaved” mass to a model of new events

= Example formulation

c(w,w)—d

oy a(w) Pw)

Pad(w’wl) —

b3 I dea 3: Fertility

V24

= Shannon game: “There was an unexpected
= “delay”?

" “Francisco”?

= Context fertility: number of distinct context types
that a word occurs in
= What is the fertility of “delay”?
= What is the fertility of “Francisco”?
= Which is more likely in an arbitrary new context?

W Kneser-Ney Smoothing

= Kneser-Ney smoothing combines two ideas
= Discount and reallocate like absolute discounting

" |n the backoff model, word probabilities are proportional
to context fertility, not frequency

P(w) o< {w' : c(w’,w) > 0}

" Theory and practice
= Practice: KN smoothing has been repeatedly proven both
effective and efficient

= Theory: KN smoothing as approximate inference in a
hierarchical Pitman-Yor process [Teh, 2006]

p 3 Kneser-Ney Details

= All orders recursively discount and back-off:

max(c’ (prevy_q,w) — d,0)
>, ¢ (prevy,_y,v)

P (w|prev, ;) = + a(prev k — 1) P_1 (w|prev,_,)

= Alphais computed to make the probability normalize (see if
you can figure out an expression).

= For the highest order, c’ is the token count of the n-gram. For
all others it is the context fertility of the n-gram:

d(z) = H{u: c(u,z) > 0}

= The unigram base case does not need to discount.
= Variants are possible (e.g. different d for low counts)

What Actually Works?

Trigrams and beyond:

= Unigrams, bigrams generally
useless

= Trigrams much better

= 4-,5-grams and more are
really useful in MT, but gains
are more limited for speech

Discounting

= Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell, etc...

Context counting

= Kneser-Ney construction of
lower-order models

See [Chen+Goodman] reading
for tons of graphs...

diff in test cross-entropy from baseline (bits/token)

relative performance of algorithms on W SJ/NAB corpus, 3-gram
0.1 = ‘ \xazitten-befl-baokoff

N AN
0.05 N .

T
- \aks-dlsc-lnterp

\\kneser ne katz
-0.15 - \\ N Yy

7kneser-ney-mo?tK\\ P
0.2 N
-0.25 - -

-0.3 - 1

100 1000 10000 100000 1e+06
training set size (sentences)

le+07

[Graph from
Joshua Goodman]

p 3 dea 4: Big Data

There’s no data like more data.

Data >> Method?

= Having more data is better...

10
951 |\ ~+ 100,000 Katz
9 \ = 100,000 KN
8.5 \ vt | .1.000,000 Katz
>} A A
g 8- s+ | 1000,000KN
E
2751 10,000,000 Katz
7 - | + 10,000,000 KN
6.5 —— all Katz
6 - —allKN
55 w

1.2 3 4 5 6 7 8 9 10 20

n-gram order

= .. butsoisusing a better estimator
= Anotherissue: N > 3 has huge costs in speech recognizers

.4

Tons of Data?

0.44

0.42

Test data BLEU

_ +HO.51BPIX2, ., b0t]
P +0.15BP/x2

[& ¥ +0.39BP/x2]

+0.56BP/x2.~
I e]
* u*0.70BP/x2

-+0.62BP/x2 i
Ve target KN ——
- +ldcnews KN -

- / o +webnews KN - -
=3 target SB e
-~ +0.66BP/x2 +ldcnews SB ---=--

" +webnews SB -~ - _
L L L L L | L L | L +.\/v|elb SuB |.|I

10 100 1000 10000 100000 1e+06

LM training data size in million tokens

[Brants et al, 2007]

What about...

p 3 Unknown Words?

* What about totally unseen words?

= Most LM applications are closed vocabulary

= ASR systems will only propose words that are in their pronunciation
dictionary

= MT systems will only propose words that are in their phrase tables
(modulo special models for numbers, etc)

" |n principle, one can build open vocabulary LMs
= E.g. models over character sequences rather than word sequences
= Back-off needs to go down into a “generate new word” model
= Typically if you need this, a high-order character model will do

W What'sin an N-Gram?

= Just about every local correlation!

= \Word class restrictions: “will have been o

/A

= Morphology: “she 7, “they "
= Semantic class restrictions: “danced the "

)

= |dioms: “add insult to

= World knowledge: “ice caps have g

= Pop culture: “the empire strikes ”
= But not the long-distance ones

= “The computer which | had just put into the machine room
on the fifth floor .

p 3 Linguistic Pain?

= The N-Gram assumption hurts one’s inner linguist!

= Many linguistic arguments that language isn’t regular
= Long-distance dependencies
= Recursive structure

= Answers
= N-grams only model local correlations, but they get them all
= As N increases, they catch even more correlations
= N-gram models scale much more easily than structured LMs

= Not convinced?
= Can build LMs out of our grammar models (later in the course)

= Take any generative model with words at the bottom and marginalize
out the other variables

W What Gets Captured?

" Bigram model:

= [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler,
house, said, mr., gurria, mexico, 's, motion, control, proposal, without,
permission, from, five, hundred, fifty, five, yen]

= [outside, new, car, parking, lot, of, the, agreement, reached]
= [this, would, be, a, record, november]

= PCFG model:
= [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the, risk,
involving, IRS, leaders, and, transportation, prices, .]
= [It, could, be, announced, sometime, .]

= [Mr., Toseland, believes, the, average, defense, economy, is, drafted,
from, slightly, more, than, 12, stocks, .]

Scaling Up?

" There’s a lot of training data out there...

0.44 e
+0.51BP/x2, . o °

e T 40.15BP/X2

0.42 i ¥ +0.39BP/x2 T
+0.56BP/X2, "

ol

T

)
LL] -
o 04 - e 1
p w*t0.70BP/x2
© L}
2 0.38 |+0.62BP/x2 1
0} e target KN ———
= +ldcnews KN -
0.36 | / L +webnews KN - 1
= target SB - —
- +0.66BP/x2 +ldcnews SB ---=--
034 " +webnews SB - o - |
1]] +We|b SB .|
10 100 1000 10000 100000 1e+06

LM training data size in million tokens

. hext class we’ll talk about how to make it fit.

p 3 Other Techniques?

= |ots of other techniques
= Maximum entropy LMs (soon)
= Neural network LMs (soon)

= Syntactic / grammar-structured LMs (much later)

